
SAP HANA DB –
An Architecture 
Overview

By Farber et. al

Presented by Varshanth Rao



Agenda

• OLTP vs OLAP

• ERP vs BI

• Why do we need Main Memory Systems?

• Goals of SAP HANA DB

• SAP HANA DB Architecture

• Query Processing

• Analytical QP

• Transactional QP





Gartner states, “ERP tools share a common process and data model, covering
broad and deep operational end-to-end processes such as those found in
finance, HR, distribution, manufacturing, service and the supply chain”

A BI tool accesses all of the data in your data warehouse, both strategic
(revenue, profit and growth), and operational (daily sales performance). BI
tools enable you to conduct in-depth analyses to generate comprehensive
information that can deliver high-level insights.

ERP, on the other hand, is an operational system full of operational and
transactional data. It will give you an exact view of your business from an
operational perspective, but it is not built to perform trend analyses or give
you high-level overviews. It is a tool centered around delivering operational
insights.

ERP vs BI: What is ERP

http://www.gartner.com/it-glossary/enterprise-resource-planning-erp/


Why 
Main 

Memory 
Systems?

High 
Availability

Fast and 
Reliable 
Recovery

Optimize 
Frequent 

Procedure 
Calls

Designed for 
Fast 

Transactions



SAP HANA DB Goals

Master of All Trades

Jack of None

Application 
Logic

OLTP

OLAP

• In Memory Columnar Store -> OLAP <- SAP TREX 

Text Engine + SAP BI Accelerator 

• In Memory Row Store -> OLTP <- P*Time RDBMS



SAP HANA DB Goals

1. Main Memory Centric

2. Support for Pure SQL for Traditional Applications

3. Support for expressive interaction model for SAP applications

4. Achieve parallelization within and across distributed setups



SAP HANA DB Architecture



SAP HANA DB Architecture

• All engines keep data in main memory as long as there is enough space 

available

• Data Structures are optimized for cache efficiency not disk efficiency

• Various compression schemes used by engines

• When available main memory is reached, all data objects are unloaded 

from main memory and reloaded into main memory when required



SAP HANA DB Architecture

•SQL

•SQLScript

•MDX

SAP HANA 
DB Interfaces

•Logical Execution Plan

•Contains acyclic digraph 
with nodes as operators & 
edges as data flows

•Support for application 
specific/special operators

Calculation 
Engine •SQL Queries -> Execution 

Plans

Plan 
Generator

•Optimizes and Executes 
Execution Plans

Execution 
Engine

Allows

• Interweaving of statistical algorithms like time series analysis, clustering, classification etc. with 

database operations

• Execute complex planning scenarios using disaggregation and custom formulas

• Construction of application specific operators like currency conversion



SAP HANA DB Architecture

Source: A Plan for OLAP by Jaeksch et al.

Example Planning Process with General Planning Model and Query Calculation Model



Query Processing: Analytical QP

• Column Stores are well suited for analytical queries on massive amounts of data : Allows columns to be

sorted so that efficient compression schemes like Run Length Encoding can be applied

• Compression performed by using a representing values as integers (valueID) which can be compressed

(dictionary compression)

• Compression allows more data to be stored on single node and faster query processing

Source: Data Mining with the SAP NetWeaver BI Accelerator by Legler et. al



Query Processing: Analytical QP

• Delta storage aids in reducing expense of single updates (delta storage loads rows incrementally according

to update access and uses Row Level Versioning (RLV) to allow concurrent transactions without locks

• Dictionary compression used in delta storage as well but dictionary is stored in Cache Sensitive B+- Tree:

variant of B+-Trees that stores all the child nodes of any given node contiguously, and keeps only the

address of the first child in each node. The rest of the children can be found by adding an offset to that

address. Since only one child pointer is stored explicitly, the utilization of a cache line is high

• Delta storage is merged periodically into main data storage (dictionary merging between delta store (CSB+-

Tree)) and old main data storage

• Write operations are redirected to new delta storage when delta merge starts and read ops access new, old

delta and old main storage

• Intra operator parallelism (example grouping ops) can be performed across cores and nodes to speed up

execution

• Large tables can be partitioned into parts/complete tables and can be assigned to different nodes.

• Execution Engine schedules ops in parallel & executes them on the node containing the data (if possible)



Query Processing: Analytical QP – InfoCube Basics

• Infocube is data storage area in which we maintain data which we are extracting from source system

physically. An InfoCube can function as both a data target and an InfoProvider

• An Infocube follows the Extended Star Schema.

• It is a self-enclosed data set encompassing one or more related business processes. It is used to store

summarized / aggregated data for long periods of time. Infocubes consist of precisely one fact table

surrounded by dimensional tables.

• A fact table consists of facts of a particular business process e.g., sales revenue by month by product. Facts

are also known as measurements or metrics. A fact table record captures a measurement or a metric.

• The accelerator index structures were designed to support such read-only or infrequent-write scenarios

• Designed to handle updates efficiently in the following two respects:

• Updates to an InfoCube are visible with minimal delay in the accelerator for query processing

(Delta Index Mechanism)

• Accumulated updates do not degrade response times significantly } Background jobs

(Delta Merge Mechanism)



Query Processing: Analytical QP – InfoCube Basics

Source: https://www.guru99.com/what-is-an-

infocube-how-to-create-one.html

Source: Data Mining with SAP NetWeaver BI 

Accelerator by Legler et. al



Query Processing: Analytical QP – Processing In Memory

• All data needed to answer a query is copied to memory -> Execution Plan is constructed -> Join Paths

created -> Performs required aggregations -> Merges Result -> Return to User

• Column indices are written into memory and cached as flat files -> Reduced memory and less I/O flows

between CPUs

Source: Data Mining with SAP NetWeaver BI Accelerator by Legler et. al



Query Processing: Transactional QP

• Advantages of using column store:

1. Unused columns/May contain only default values/status flags = High compression opportunity

2. Real world transactional workload has larger read ops than benchmarks

3. Append scheme for updates much simpler than in-place updates

4. Avoiding use of indices (use only for primary keys) as scan performance is good enough

• Challenges of using column store:

1. Performance overhead to allocate memory per column

2. Frequent updates = new entities in delta storage = frequent merges } CPU Intensive Operation



Query Processing: Transactional QP – P*Time RDBMS

Source: P*TIME: Highly Scalable OLTP DBMS 

for Managing Update-Intensive Stream 

Workload by Cha et. al

• C++ with templating was chosen for P*Time DB Codebase

• L2 Cache Conscious In-Memory DB -> Tables are stored

(column wise partitions) in 1 or more containers which can

hold multiple pages for easy swap-in-out. B+- Tree used for

indexing

• Fine grained parallel logging and recovery (using separate

log partitions to store differential (XOR) logs for

parallelization and fine grained fuzzy checkpointing [record

or column level])

• Concurrency control through optimistic, latch-free index

traversal (OLFIT) scheme (bottom up latching instead of top

down latching) on B+- trees

• Access to SQL processor using embedded C++ APIs



Criteria / In Memory DB Hekaton SAP HANA DB

Target OLTP OLTP + OLAP

Storage Layout Column Store Interchangable Layout

(Row <-> Column)

Codebase TSQL translated into machine code 

using C as intermediate

C++

Data Structure Mixed Abstract Tree (Data + 

Metadata) -> Pure Imperative Tree 

(Simplified Data)

SAP BI Infocubes Converted to 

Internal Tree Representations

Concurrency

Control Mechanism

Latch Free Bw Trees

Optimistic Multi Version 

Concurrency Control

L2 Cache Sensitive B+- Trees

OLFIT

Checkpointing Delta File Maintenance & Merging Fuzzy Checkpointing

Garbage Collection Hekaton GC – Single Process Multi 

Threaded by Piggybacking on 

Hekaton Transaction Workers

Separate Process, Multi Threaded 

using Dedicated GC Workers. 

Hybrid Version Proposed

Hekaton vs SAP 
HANA DB



Conclusion/Review

• ERP vs BI:

• ERP popularly uses OLTP

• BI popularly uses OLAP

• Main memory systems

• Review of OLTP vs OLAP

• OLTP: Update & Write heavy, Row Store Preferred

• OLAP: Read heavy, Column Store Preferred

• SAP HANA Goals: OLTP+OLAP In 1 Suite

• SAP HANA DB Architecture

• Analytical Query Processing

• SAP BIA Data Structures & In-Memory Architecture

• Infocube Basics

• Transactional Query Processing

• Advantages & Challenges of using Column Store

• P*TIME RDBS for OLTP

• Hekaton vs SAP HANA DB



Critique/Discussion
• Write operations are redirected to new delta storage when delta merge starts and read ops access new, old

delta and old main storage [author refers to Fast Updates on Read-Optimized Databases Using Multi-Core

CPUs by Krueger et. al, but does not explain consistent read ops are managed]

• Intra operator parallelism (example grouping ops) can be performed across cores and nodes to speed up

execution [How does the result aggregation work when ops are performed across nodes? How are failures

handled i.e. does the aggregator wait till it succeeds or is the task given to another core/node]

• SAP BIA uses CSB+- tree for Indexing into OLAP targeted DBs -> Cache optimized delta index dictionaries,

P*TIME uses B+- and justifies using B+- trees over CSB+- tree claiming better performance

• Fuzzy checkpointing is reliable only in case of high bandwidth availability of disk since frequent flushing to

disk is required

• In memory row store and column store conversions allowed -> How long does the conversion take? Are

there mechanisms to smartly store/retrieve the tables in the frequently used layouts?

• Authors follow partitioning schemes & indexes within partitions. Previous work shows indexing within

partitions is only useful when they workload is partitionable



Thank You!


